STATE-OF-THE-ART EVENT GENERATORS VIA NEW TECHNIQUES AND TECHNOLOGIES*

*AN ENTIRELY SUBJECTIVE ACCOUNT

SNOWMASS COMMUNITY PLANNING MEETING – 7TH OCTOBER 2020 ADVANCES IN EVENT GENERATION AND DETECTOR SIMULATION ENRICO BOTHMANN

INTRODUCTION

motivation

→ Josh' talk

do we want to make compromises in precision or have physics analyses limited by MC stats?

going for the bottleneck: parton-level event generation

- 1. less ME evaluations by
 - storing parton-level events/grids
 - doing a-posteriori/on-the-fly reweighting
 - improving sampling efficiency → slide #2
- more throughput: harness parallel computing power now that Moore's law for CPU has stopped working for us (there is no free lunch any longer) → slide #3

REDUCE ME EVALUATIONS

SLIDE PARTLY ADAPTED FROM MAREK SCHÖNHERR

NRICO BOTHMANN – 7TH OCTOBER 202

the issue

unweighting efficiency $\langle w \rangle / w_{\rm max}$ degrades with process complexity

need many parton-level trial events (i.e. ME evaluations) to generate single unweighted event due to wide weight distribution of trial events

the idea

replace 1D ML algorithms (VEGAS) with more flexible DNN-powered method

different to generating entire events: only a map of the phase-space is learned to distribute random points more efficiently \rightarrow can guarantee that physics is left untouched

the quest

toy examples based on GAN/DNN promising

[Bendavid 1707.00028, Klimek Perelstein 1810.11509]

realistic implementation for physical processes with cuts etc. using ...

Normalising Flows [EB et al. 2001.05478, Gao et al. 2001.10028

DNN [Chen Klimek Perelstein 2009.07819]

eg promising improvements for simpler cases

so far not better than VEGAS for more complex cases

→ certainly worthwhile to keep trying

IMPROVE ME THROUGHPUT

NRICO BOTHMANN – 7TH OCTOBER 2020

Parallel computing power of CPU vector engines and accelerators under-explored, although MC amenable to parallelisation

previous OpenCL/CUDA attempts (neither reached production quality)

- 1. MG5_aMC-based: speed-ups ~O(20)-O(200) for various SM procs

 [Hagiwara Kanzaki et al. EPJC 66 477-492] → picked up again as mentioned by Josh
- 2. Berends-Giele recursion relations (BG), gg \rightarrow ng, leading N_{C_r} speed ups \sim O(150)-O(300) [Giele Stavenga Winter 1002.3446]

time's ripe for a renewed effort at ME@GPU!

10 years ago, trivial parallelisation over CPU cores/clusters was good enough, but now CPU processing capacity has "stalled" and HL-LHC comes closer

(GP)GPU improved: O(10)x memory bandwidth, even more for DP FLOPS

new abstractions address wide scope in parallel computing power and are less vendor-specific: KOKKOS, SYCL, recent OpenMP, OpenACC, HPX etc.

reduction in energy consumption can be substantial [Tian Benkrid 10.1145/1862648.1862656]

the plan

pick up BG, which has best scaling for high multis

determine speed-ups with Tensorflow, CUDA, SYCL, ... and recent GPU \rightarrow find best approach in terms of gain and practicality

embark on full SM generalisation and automation, interface with toolchains to make it usable (as SHERPA plug-in or just via LH/HDF5 event output)

EU Strategy for Particle Physics Update 2020:

"[d]eveloping accelerator- friendly versions of generators and integrators is an important step in reducing the computing demands for LHC experiments and will be critical to the success of the [HL-LHC]."

[1910.11775]

HSF Physics Event Generator WG:

"Porting and optimizing generators on GPUs is especially important to be able to **exploit modern GPU-based HPCs** (such as SUMMIT [145], where 95% of the compute capacity comes from GPUs [146])."

[2004.13687]

BACKUP

GPU & CPU TREND: DP VS. SP

NRICO BOTHMANN – 7TH OCTOBER 2020

For 2019, the comparison is made between the Nvidia Volta V100 GPU and the Intel Cascade Lake Xeon SP and the trend is projected into 2020.

TIMING OF INTEGRAND SLIDE TAKEN FROM TALK BY STEFAN HÖCHE ENRICO B

- ► Amegic hep-ph/0109036 → Feynman diagrams
 Worst case scaling factorial with particle multiplicity
- Comix arXiv:0808.3674 → Color-dressed recursion Worst case scaling exponential with particle multiplicity
- ► MadGraph arXiv:1405.0301 → Feynman diagrams
 Worst case scaling factorial with particle multiplicity
- ▶ OpenLoops arXiv:1907.13071 → Color-ordered recursion Worst case scaling ~ factorial with particle multiplicity